Call for Abstract

4th International Conference on Advances in Enzymology & Molecular Biology, will be organized around the theme “Novel Advancements in Enzymology & Molecular Biology”

Enzymology Congress 2018 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Enzymology Congress 2018

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Enzymes are both macromolecular and micromolecular proteins and are found naturally. They are macromolecular biological catalysts and accelerate chemical reactions. Enzymology deals with the study of enzymes, their kinetics, structure, and function, as well as their relation to each other. Enzymes play a very important role in the world. They act as a catalyst for a chemical reaction, whether that reaction involves the execution of DNA for the purpose of cell repair or for the digestion of any types of meat as well as poultry. Biochemistry is the branch of science which deals with the chemical processes within and related to living organisms. It is a laboratory based science that combines both biology and chemistry. Biochemistry mainly focuses on processes that happen at a molecular level like inside our cells, studying components like proteins, lipids and organelles. It also looks at how cells communicate with each other. Biochemists should understand how the molecular structure relates to its function, and then allow them to predict that how the molecules will interact. Biochemistry covers a range of scientific disciplines, which includes genetics, microbiology, forensics, plant science and medicine.

  • Track 1-1Biochemical processes
  • Track 1-2Enzymatic chemistry
  • Track 1-3Biochemical signaling

Molecular enzymology is that branch of biochemistry which encircles or deals with the functional as well as the structural characteristics of the enzymes within a molecular level. Enzymes are globular proteins which play a very important role as a catalyst for any type of biochemical reactions. Molecular enzymology is based on designing and enzyme synthesis and high unmet medical needs are based on innovative drug targets. These works are based on innovative drug targets. Molecular Enzymology's interest include in all aspects related to enzymes like discovery of enzymes, structure of enzymes, enzyme mechanisms, cellular and metabolic functions of enzymes, discovery of drugs, biochemical aspects of enzymes, bioinformatics, computational analysis, studies for molecular modeling, newer methods in enzyme expression as well as purification, bio catalysis, bio molecular engineering, enzyme kinetics and enzyme inhibitors.

  • Track 2-1Designing of enzymes
  • Track 2-2Synthesis of enzymes
  • Track 2-3Enzyme mechanisms
  • Track 2-4Bio molecular engineering
  • Track 2-5Enzyme expression

Clinical enzymology deals with the measurement of enzyme activity for the diagnosis and treatment of diseases. Enzymes are macromolecular catalysts which increase the rate or velocity of physiologic reactions. Each and every reaction occurring daily in our body takes place with the help of an enzyme or the other. In general, most of the enzymes are present in cells at much higher concentrations than that in plasma. Measurement of these levels in plasma indicates whether their tissue of origin is damaged causing to the release of intracellular components into the blood. This forms the basis of what is called clinical enzymology. Thus we can say that clinical enzymology refers to measurement of enzyme activity for the diagnosis as well as the treatment of diseases.        

  • Track 3-1Spectrometry, electrophoresis & immunoassay
  • Track 3-2Chemical pathology
  • Track 3-3Toxicology

Enzymes are the group of proteins which process cellular metabolism. They can affect a reaction either by catalysing or they can be used to reverse the reactions in bio-chemical pathways. Though enzymes have complex enzymatic structures, they undergo many changes which is very important for reactions and so enzyme structure is very much essential. There is always a specific enzyme for specific reaction i.e., reactions are enzyme specific in nature. Enzymes structures are made up of a special type of amino acids i.e., α amino acids which are linked together via an amide (peptide) bond in a linear chain. This is the primary structure and the resulting amino acid chain is called a polypeptide chain or rather a protein.

  • Track 4-1Bio-chemical pathways of enzymes
  • Track 4-2Metabolic pathway of enzymes
  • Track 4-3Activation energy of enzymes
  • Track 4-4"Lock and key" model of Enzymes
  • Track 4-5Exploitation of enzymes

Enzymes are the vital activators in life processes, likewise in the soil they are known to play a substantial role in maintaining soil health and its environment. Soil enzymes are critically important to the functioning of the soil. Soil enzymes are the product of soil microorganisms and are the drivers for biogeochemical cycling in soils. Soil enzymes are also involved in remediation of contaminated soils. As a result, soil enzymes have been considered indicators for soil ecosystem health. The enzymatic activity in the soil is mainly of microbial origin, being derived from intracellular, cell-associated or free enzymes. A unique balance of chemical, physical, and biological (including microbial especially enzyme activities) components contribute to maintaining soil health. Evaluation of soil health therefore requires indicators of all these components. Healthy soils are essential for the integrity of terrestrial ecosystems to remain intact or to recover from disturbances, such as drought, climate change, pest infestation, pollution, and human exploitation including agriculture. Deterioration of soil, and thereby soil health, is of concern for human, animal, and plant health because air, groundwater, and surface water consumed by humans, can be adversely affected by mismanaged and contaminated soil.

  • Track 5-1Methodology of Soil Enzyme
  • Track 5-2Enzyme Diversity in Soils
  • Track 5-3Michaelis–Menten Enzyme Kinetics
  • Track 5-4Application of Kinetic Models

Enzyme kinetics deals with the study of the chemical reactions that are catalyzed mainly by the enzymes. In enzyme kinetics, the rates of the reaction are measured and the effects of varying the conditions of the reaction are studied. Studying the kinetics of an enzyme in this way can reveal the catalytic mechanism of that particular enzyme as well as its role in metabolism, how its activity is being controlled, and how a drug might inhibit that enzyme.

  • Track 6-1Immunoassays for protein detection
  • Track 6-2Catalytic mechanisms of enzymes
  • Track 6-3Chemical reactions of enzymes
  • Track 6-4Activation of enzymes
  • Track 6-5Inhibition of enzymes

Enzymes are the macromolecular and micromolecular proteins in the drug design that act as drug targets for the diseases in the process of discovery of drugs as well as its development. There are a number of drug targets which are involved in the designing of the drugs. Drug target is a nucleic acid or a protein whose activity can be modified by a drug itself. The drug can be a chemical compound with a small molecular weight or a biological compound, such as an antibody or a recombinant protein. The drug target should be effective in the disease by relevant in vitro or in vivo models and analysis.

  • Track 7-1Drug designing using enzymes
  • Track 7-2Drug development using enzymes
  • Track 7-3Drug modelling
  • Track 7-4Drug targeting

Enzyme Toxicology is unremarkable, except the potential irritating effects usually associated with some proteases at high concentrations, and the allergic effects of enzymes. Like anything one is exposed to, the dose makes the poison; thus, with certain enzymes, a sufficient excess in exposure can lead to irritation. Enzymes are like the majority of food proteins so that oral exposure to the gut is entirely without effect, except perhaps at very high, unrealistic, exposure levels 

Enzymes have been evaluated for genotoxic effects Nevertheless, enzymes are not mutagenic in the standard screening assays used in genetic toxicology, specifically the Ames test, and are not clastogenic in chromosome aberration tests. Repeated exposure studies on a number of enzymes have been completed. Most often this has been done in relation to enzymes to be used in foodstuffs and so exposure has been carried out via the oral route. 

Proteomics is the large-scale study related to proteins, mainly their structures and functions. Proteins are the vital parts of all the living organisms, as they form the main components of the physiological metabolic pathways of the cells. The term proteomics was first coined in the year of 1997 to make an analogy with the term genomics, which again deals with the study of the genome. The word proteome is a combination of protein and genome together. The proteome can be said as the entire set of proteins, which are produced or modified by an organism or a system.

  • Track 9-1Post-translational modifications of proteins
  • Track 9-2Methods of studying proteins
  • Track 9-3Biomarkers
  • Track 9-4Hybrid technologies
  • Track 9-5Mass spectroscopy & protein profiling

Molecular simulations and modelling means altering the science of enzymology. Computational enzymology is a rapidly developing area, and is studying the theories of catalysis, challenging 'textbook' mechanisms, and also identifying the novel catalytic mechanisms. Also increasingly, modelling is contributing directly towards the experimental studies of the enzyme-catalysed reactions. Potential practical applications in this area include interpretation of the experimental datas, catalyst design and also drug development.

  • Track 10-1Molecular simulations of enzymes
  • Track 10-2Molecular modelling of enzymes
  • Track 10-3Fundamental mechanisms of biological catalysts

The nanomaterials possess ideal characteristics to equilibrate principal factors which determine biocatalysts efficiency, including specific surface area, mass transfer resistance and effective enzyme loading. This review presents the current scenario and techniques in enzyme immobilization. Some methods are used which are efficient to combine proteins/enzymes with nanoparticles. Immobilization process is to optimize the operational performance of an enzyme for industrial applications. So far different matrices have been described in the literature to improve the performance of the immobilized enzymes. With the advent of nanotechnology, the nanomaterials because of their unique physico-chemical properties constitute novel and interesting matrices for enzyme immobilization.

  • Track 11-1Nanotechnology products
  • Track 11-2Nanopolymers
  • Track 11-3Enzyme nanoparticles
  • Track 11-4DNA microarray
  • Track 11-5DNA nanotechnology
  • Track 11-6Immobilization using nanoparticles
  • Track 11-7Nanotechnology in targeted drug delivery
  • Track 11-8Nanotechnology enabled enzyme activity

Enzymes are used nowadays in chemical industries and for some  industrial purposes where extremely specific catalysts are required for industrial uses. Enzymes in general are rare in number of reactions they have evolved to catalyse and also by the lack of stability in organic solvents and at very high temperatures. Thus, protein engineering is an active and advanced area of research which includes attempts for creating new enzymes with novel properties. These efforts have begun to be successful, and a few enzymes have now been designed to catalyse reactions that do not occur naturally. Enzymes are usually macromolecular and micromolecular protein molecules that manipulate the other molecules i.e., the enzymes substrates. These target molecules binds up to the active site of an enzyme and are thus converted into products via a series of steps which are combined known as the enzymatic mechanism.

  • Track 12-1Enzyme purification
  • Track 12-2Enzyme production
  • Track 12-3Enzymatic mechanisms

In the presence of an enzyme, the reaction runs in the same direction as it would run without an enzyme, but just more quickly. The reaction rate is dependent on the activation energy which is needed to form the transition state which then transforms into products. Enzymes increase  the reaction rates by decreasing the transition state energy. First, binding forms an enzyme-substrate complex (ES) with low energy. Secondly the transition state is stabilized by the enzyme such that it requires lesser energy to achieve compared to the uncatalyzed reaction (ES‡). Finally the enzyme-product complex (EP) gets dissociated to release the products

  • Track 13-1Catalytic mechanisms of enzymes
  • Track 13-2Applications of immobilized enzymes in food
  • Track 13-3Enzymes in food digestion
  • Track 13-4Product recovery
  • Track 13-5Production of biomass
  • Track 13-6Production of extracellular metabolites
  • Track 13-7Production of intracellular components
  • Track 13-8Transformation of substrate
  • Track 13-9Transition state of enzymes
  • Track 13-10Enzyme-substrate complex
  • Track 13-11Single cell protein

Food enzymology deals with all the aspects of the enzymology which are related to the food systems. The basic aspects of the food enzymology are the methods for measuring the enzyme activities; extraction of the enzymes from microbial, plant and animal systems; methods of purification of enzyme as well as its characterization; and regulation of enzymatic activities by activators, inhibitors, and via covalent modification

The total cost of decreasing low-density lipoprotein generally includes the costs of physician services, case finding and monitoring, dietary and exercise modifications, medications, and also treating the side effects. The cost of treatment-related appointments follow-up or varies by type of provider, location, and practice setting. The annual cost of statin drugs to reduce low-density lipoprotein cholesterol levels can range from $1,082 to $1,543 per year.  Although the cost of decreasing the low-density lipoprotein cholesterol levels can be high, but it is much lower than the direct and indirect costs of cardiovascular disease research.

  • Track 15-1Glycerolipids
  • Track 15-2Sphingolipids
  • Track 15-3Saccharolipids
  • Track 15-4Lipoprotein
  • Track 15-5Metabolic disorder

Genomics is a domain of science that specialize in the structure, function, evolution, mapping, and redaction of genomes. An ordering is an organism's complete set of DNAs, as well as all of its genes. In distinction to biology, that refers to the study of individual genes and their roles in inheritance, genetics aims at the collective characterization and quantification of genes, that direct the assembly of proteins with the help of enzymes and traveler molecules. In turn, proteins compose body structures comparable to organs and tissues still as management chemical reactions and carry signals between cells. Genetics conjointly involves the sequencing and analysis of genomes through uses of high turnout DNA sequencing and bioinformatics to assemble and analyze the perform and structure of entire genomes.  Advances in genetics have triggered a revolution in discovery-based analysis and systems biology to facilitate understanding of even the foremost advanced biological systems comparable to the brain.

 

  • Track 16-1Cellular & molecular genetics
  • Track 16-2Genomics: Disease & Evolution
  • Track 16-3Stem cells & Regenerative medicine
  • Track 16-4Bioinformatics in human genetics
  • Track 16-5Cytogenetics
  • Track 16-6Congenital disorders
  • Track 16-7Transplanation

The term genetic science  is currently redundant as a result of up to date genetics is totally molecular. biology isn't created of 2 sciences, one molecular and one non-molecular. all the same, active biologists still use the term. once they do, they're usually concerning a collection of laboratory techniques geared toward distinctive and/or manipulating polymer segments concerned within the synthesis of necessary biological molecules. Scientists typically speak and write of the applying of those techniques across a broad swath of medicine science. For them, genetic science is associate fact-finding approach that involves the applying of laboratory ways and analysis ways. This approach presupposes basic data regarding the expression and regulation of genes at the molecular level