Enzymology & Thermodynamics
In the presence of an enzyme, the reaction runs in the same direction as it would run without an enzyme, but just more quickly. The reaction rate is dependent on the activation energy which is needed to form the transition state which then transforms into products. Enzymes increase the reaction rates by decreasing the transition state energy. First, binding forms an enzyme-substrate complex (ES) with low energy.
- Catalytic mechanisms of enzymes
- Enzyme-substrate complex
- Transition state of enzymes
- Transformation of substrate
- Production of intracellular components
- Production of extracellular metabolites
- Production of biomass
- Product recovery
- Enzymes in food digestion
- Applications of immobilized enzymes in food
- Single cell protein
Related Conference of Enzymology & Thermodynamics
Enzymology & Thermodynamics Conference Speakers
Recommended Sessions
- Clinical Enzymology
- Computational Enzymology
- Enzyme Kinetics
- Enzyme Nanotechnology
- Enzyme Toxicology
- Enzymology & Biochemistry
- Enzymology & Proteomics
- Enzymology & Thermodynamics
- Enzymology in Drug Discovery
- Enzymology in Food Processing & Technology
- Genomics
- Industrial Applications of Enzymology
- Lipid and Lipoprotein Metabolism
- Molecular Enzymology
- Molecular Genetics
- Soil Enzymology
- Structural Enzymology
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry - Glycobiology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Evolution of Glycan Diversity - Glycobiology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene regulation and Cell Signalling - Structural Biology 2025 (Germany)
- Genomics and Metabolomics - Glycobiology 2025 (Germany)
- Glycans in Diseases and Therapeutics - Glycobiology 2025 (Germany)
- Glycans in Drug Design - Glycobiology 2025 (Germany)
- Glycan’s - Glycobiology 2025 (Germany)
- Glycobiology - Glycobiology 2025 (Germany)
- Glycochemistry - Glycobiology 2025 (Germany)
- Glycoimmunology - Glycobiology 2025 (Germany)
- Glycoinformatics - Glycobiology 2025 (Germany)
- Glycolipids and Glycopeptides - Glycobiology 2025 (Germany)
- Glyconeurobiology - Glycobiology 2025 (Germany)
- Glycopathology - Glycobiology 2025 (Germany)
- Glycosience - Glycobiology 2025 (Germany)
- Hybrid approaches in Structure prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular biology techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteoglycan and Sialic acid - Glycobiology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Recent Advances in Glycobiology - Glycobiology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Synthesis and Biological Role of Glycans - Glycobiology 2025 (Germany)